A TOOLKIT FOR MANAGING XML DATA WITH A
RELATIONAL DATABASE MANAGEMENT SY STEM

By

RAMASUBRAMANIAN RAMANI

A THESISPRESENTED TO THE GRADUATE SCHOOL
OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF
MASTER OF SCIENCE
UNIVERSITY OF FLORIDA

2001

www.manharaa.com



Copyright 2001

by
RAMASUBRAMANIAN RAMANI

www.manharaa.com




To my parents, Y anuna and Ramani, who have given me the best vauesin life.

www.manharaa.com

o AJLb



ACKNOWLEDGMENTS

This thess is a result of the motivation and support provided by many individuds.
Firgly, 1 would like to thank Dr. Joachim Hammer who has dways remained a congtant
source of ingpiration and technica expertise. His enthusiasm for the subject has been a
driving force, channding my efforts. | am dso thankful to Dr. Douglas Dankd and Dr.
Herman Lam, who kindly agreed to participate in my supervisory committee. It has been
a great honor to be a part of the IWiz development team and to work with my colleagues
Anna Teerovskaya, Amit Shah, Charnyote Pluempitiwiriyawg and Rgesh Kanna |
would like to thank Sharon Grant and Mathew Belcher, who deserve a specid mention
for their support and hep in the lab. Findly, | would like to acknowledge the support

given by my family members, back in India

www.manaraa.com



TABLE OF CONTENTS

pge
ACKNOWLEDGMENTS ...ttt st st sre e iv
LIST OF FIGURES ..ottt ettt st nennennenneann Vii
ABSTRACT ..ttt bbbttt b et b e bt b e st n e et et e b b e ne e benre e X
CHAPTERS
LINTRODUGCTION ..ottt eeeieeee et e e e e e aestesressesseeseesaensesessensessensenns 1
1.1. Using XML to Represent Semistructured Data............ccevveeeereeriecieesecsesee e 1
1.2. GoalS Of TRISRESEAICN.......coiiiiiiee e e 2
1.2.1. ChallENQES.......ccueiuieiieeeieete ettt 3
1.2.2. CONIIDULIONS. ...t 3
2 RELATED RESEARCH ..ottt sttt nae st snesnenneas 5
2250 D |V I S 5
0 = - L o ST PRPS 6
2 B I DR 7
2.1.3. APIsfor Processing XML DOCUMENES ........ccerireriririeieniesie e 9
2.2. XML QUENY LANQUAGES ......ceoveeeiiiieiiieesieeesiee s siiee s s e e s e sne e snnee s 10
2.3. DAtaWar€NOUSING.......coiiiiiieiiie ettt re e sae e sbe e nneenreeenne e 12
2.4. Mapping DTDs into Relational SChemas............cooviriiieieiccee e 13
2.5. Data Loading and MaiNteNanCe .........c.ccuerueereereerieeieesreesieseesseenseeeesseessesseesseesseens 14
2.6. XML Management SYSIEIMS ......cccviiiiiiiiiieiriesesies e ssinee s s s e e 15
2.6.1. OraCle X SU.....oiiiiiiieeieeie ettt ettt re e 15
2.6.2. GMD-IPSI XQL ENQINE ...ttt 16
2.6.3. LORE ... .ottt e et b et 17
STHE IWIZ PROUJIECT ....cviitecieeteeeeeete e s ettt ae st sre e eneeaenaessenaesnenneens 18
4 XML TOOLKIT: ARCHITECTURE AND IMPLEMENTATION ....ccccoiiiinieriiniens 22
4.1. Managing XML Daain IWIiZ........ccoceiiiiiieie ettt 22
4.2. Rational for Using an RDBMS as Our Storage Management ...........c.ccoceeeeeeeene. 23
4.3. FUNCtional SPECITICALIONS ........ccueiierieeie it se et e e e e 24
4.4, ArchiteCture OVEIVIEIW .........ooiiieiicieeieeeee ettt 25

www.manaraa.com



4.5. Schema Creator ENGINE (SCE) .......cueiuieiieiieciecie st sneens 28

4.6. XML DataLoader ENgINE(DLE) .......ccccoiiiiiiiiiieeeeeeeeeee e 32
4.7. Relational- to- XML- ENGINE (RXE) ...covveieeieciiee et 33
4.8. Database Connection ENging (DBCE) .........cccveiiiieieeie e 36
5 PERFORMANCE EVALUATION ....ooiiiice sttt s 37
5.1 EXPerimental SEIUD .....ccvceeiieie ettt sne e 37
I == O S SRS 39
5.3. ANalySIS Of the RESUITS........oiuiiiieceeee s 42
B CONCLUSIONS........coiiiteriestisieeee ettt sttt st st b e st e e e teseenaesrenne e 46
5.1, SUMIMEBIY ...ttt ettt b e b b n e n e resanenne e 46
6.2, CONLITDULIONS.......eiueiiiiesieste ettt b et e e e 46
6.3, FULUrE WOKK ...ttt sttt 48
LIST OF REFERENCES. .........c.oci ittt esnesnennenneens 50
BIOGRAPHICAL SKETCH ..ottt st 54

www.manharaa.com




LIST OF FIGURES

Figure Pege
2.1: Example of an XIML GOCUMETE. ......coviieiiieriesie ettt 6
2.2: A sample DTD representing bibliographic information..............cccevveceiieve s, 7
2.3: An XML Schema representing the bibliographic information in the sample DTD. ................. 9
2.4: Generic WarehoUuSINg @CHhITECIUNE............oouiiiieieie et 12
315 TWIZ ATCHITECIUNE. ...ttt nn e n e 18
3.2- WHM ATCIITECIUNE ...ttt 19
4.1: Proposed Architecture of XML datamanagement in IWIz. ..........cooeiivinieieienenee e 22
4.2: Built-time architecture of the XML tOOIKit ...........ccoeoeiiireinreeeees e 25
4.3: Run-time architecture of the XML tOOIKIt ...........ccoeieirinereee e 26
4.4: Input DTD to the Schema creator enging (SCE).........veveveinieeiienienieeie e 27
4.5: JoiNale KaySTHE FOMMEL.........cciiieieiceeee e e 29
4.6: Tables created by the SCE for the input DTD iNn FQUIE 4.4. ........c.oooveceevieieeeceece e 29
4.7: System tablescreated Dy the SCE. ..........ooeoiie e 30
4.8: PSeud0 COUR OF the SCE ..ot 30
4.9: A sample XML document conforming to theinput DTD in Fgure 4.4. .........ccoveeevvecieennnne. 31
4.10: Contents of the tables after loading the sample XML document in Figure 4.9. ................... 31
4.11: Pseudo code Of the 1OBOEN ..........eouiiieieeeee e 33
4.12: SQL query to retrieve books and articles from the datawarehouse............cccoveveeiveienee 34
4.13: XML document generated by the Relaiond-to-XML-engine (RXE). .......ccccovevevvveieenne. 34
vii

www.manaraa.com



4.14: PSudo COOR OF tNE RXE. ..o et e e e e aaeens 35

5.1: DTD describing the structure of a TV programs QUITE.........c.ocvererireiereeeeeeeesee e 38
5.2: Tables created by the SCE for the TV programs guide DTD .......ccocvevveevveceveee e 38
5.3: An example XML document conforming to the TV programs guide DTD. ........ccccceecveevennee. 39
5.4: An XML-QL query to retrieve information about a particular TV program............c.cceeeeene. 40
5.5: XML-QL processor output in theform of an XML document. ..........cccceeeeeeienenenencneenne 41
5.6: Equivaent SQL query to retrieve information about a particular TV program. ..........c.cc.e..... 41
5.7: Output of the RXE in theform of an XML dOCUMENL..........cccooerinenenininieee e 42

viii

www.manharaa.com




Abstract of Thes's Presented to the Graduate School
of the Universty of Horidain Partid Fulfillment of the
Reguirements for the Degree of Master of Science

A TOOLKIT FOR MANAGING XML DATA WITH A
RELATIONAL DATABASE MANAGEMENT SYSTEM

By
Ramasubramanian Ramani
August 2001

Chairman: Joachim Hammer
Magjor Department: Computer and Information Science and Engineering

This thess presents the underlying research, desgn and implementation of our
XML Daa Management Toolkit (XML toolkit), which provides the core functiondity for
doring, querying, and managing XML daa usng a rediond daabase management
sysem (RDBMS). The XML toolkit is an integrd pat of the Information Integration
Wizard (IWiz) sysem that is currently under development in the Database Research and
Devdopment Center a the Universty of Florida Wiz enables the querying of multiple
semidructured information sources through one integrated view, thereby removing
exiging heterogeneties a the sructurd and semantic levels. Wiz uses a combined
mediation/data warehousing approach to retrieve and manage information from the data
sources which are represented as semistructured data in IWiz; the internd data modd is
based on XML and the document object modd (DOM). The XML toolkit is part of the

Data Warehouse Manager (WHM), which is respongble for caching the results of

www.manaraa.com



frequently accessed queries in the IWiz warehouse for faster response and increased
effidency.

IWiz has two magor phases of operation: A built-time phase during which the
schema crestor module of the XML toolkit creates the relationa schema for the data
warehouse usng the DTD description of the globa IWiz schema as input. This is
folowed by the run-time or query phase during which the warehouse accepts and
processes XML-QL queries againg the underlying relationd database. Note the XML-
QL to SQL converson is pat of another ongoing research project in the center. During
run-time, the Rdationd-to-XML-Engine component of the XML toolkit is used to
convert relationd results from the warehouse into an equivdent XML document that has
the same dructure as the globd Wiz schema The initid query may adso be sent to the
mediator in case the contents of the data warehouse are not up-to-date. The loader
component of the XML toolkit is used to convert and store XML data from the sources
viathe mediator into the underlying relationa format during warehouse maintenance.

We have implemented a fully functiond verson of the XML toolkit, which uses
Oracle 8i as the underlying reationa data warehouse engine. The XML toolkit is

integrated into the IWiz testbed and is currently undergoing extensve testing.

www.manaraa.com



CHAPTER 1
INTRODUCTION

1.1. Usng XML to Represent Semistructured Data

The Web is a vast data store for information and is growing & a fast rate. This
information can originate from a vaiety of sources, such as emal, HTML files
ungtructured text as well as structured databases. These sources make the Web a dynamic
and heterogeneous environment, in which interpretation of information is difficult and
error prone [1]. Much research has been undertaken to provide an integrated view of the
Web by usng a computerized approach. However the identification, querying and
merging of data from heterogeneous sources is difficult.

A condderable amount of informaion avalable on the Web today is
semigtructured [2]. Semistructured data can be defined as data that has structure that may
be irregular and incomplete and need not conform to a fixed schema There has been a lot
of research in the past in developing data modds, query languages and systems to
manage semistructured data. One such mode is the Object Exchange Modd (OEM) that
was explicitly defined to represent semidructured data in heterogeneous sysems in the
Tammis sysem [3]. A vaiant of this data mode has been used in the deveopment of
Lore [4]. The recent emergence of the Extensble Markup Language (XML) from the
World Wide Web Consortium [5] has kindled a lot of interest in using it to mode
semigtructured data [6-7]. XML is well suited to model semistructured data because it

makes no restrictions on the tags and relationships used to represent the data XML aso

www.manaraa.com



provides advanced features to modd condraints on the data, using an XML schema or a
Document Type Definition (DTD). However, XML does have some differences with the
other semistructured data modds. (1) XML has ordered collections while semistructured
data are unordered, (2) Attributes in XML can be unordered and (3) XML dlows usage
of references to associae unique identifiers for dements; this is absent in most other data
modds. Despite these differencess, XML is a popular data modd to represent
semigtructured data, mainly due to the close reationship to HTML as wel as the
emergence of standards and tools for creating and viewing XML. However, to the best of
our knowledge not much progress has been made in the development of techniques and

tools for storing and managing XML for rapid querying.

1.2. Goas of This Research

The god of the thesis is to andyze the problems of XML data management and
implement a toolkit that can be used to provide a persstent storage, retrieva and query
component for XML data We have developed such a toolkit as part of the Warehouse
Manager (WHM) component in the IWiz prototype system in the Database and Research
Center, Univerdty of Florida[8].

We rephrase the overdl problem gtatement for this thess as follows Given the
need to manage semigructured data in generd and XML data in particular we need a
sysem for managing this daa efficently. There are a wide vaiety of management
gysems, ranging from native XML databases to XML-enabled databases. Among the
dternatives, we found it very compdling to choose the reaiond DBMS because of its
wide gspread popularity, robustness and performance. Since relationa databases are

dready used to dore information for most web stes and since XML is becoming the

www.manaraa.com



dandard to represent this information, it is of the utmost importance that these two
technologies be integrated [9]. So, in our sysem we have an underlying relationd
database for storing XML data and an interface to trandform XML data to relationd and
viceversa. Severa mgor database vendors like Oracle are working on tools for
managing XML daa We have summarized the limitations of these products in the
related research section.

1.2.1. Chdlenges

To address the problem raised above, we have identified the following three
chdlenges. (1) Automatic credtion of the underlying relational schema based on the
schema for the XML daa tha must be managed. This problem is further complicated
when usng DTDs to specify the structure of XML data; DTDs provide only a loose
description of the dructure of an XML document and does not contan any type
information. (2) The loading of a sngle XML document into an equivdent relationd
schema may trigger the insertion of tuples into severd tables. (3) Credtion of a wdl-
sructured XML document with nested tags requires additiond input and pocessing [10].
Exiging methods in converting relationd results into equivdent XML documents, use
ample techniques where by the resulting document has tags derived from the metadata
and vaues from the rdationd results XML is a condantly evolving dita modd. Thus the
solution to XML data management is not permanent and needs to be enhanced with the
progress made in relaed fields like new query languages, more perastent storage options
and new grammar definitions like XML Schema

1.2.2. Contributions

Upon the concluson of this research we will have contributed to the date-of-the-

at in XML daa management in severd important ways. (1) Automaic schema

www.manaraa.com



generation: XML uses hierarchicd representation of data. This native negting in XML
has to be trandated to the relationa schema that is flat in structure. The schema crested
has to presarve the rdationships expressed in XML and map them to relationd
condraints. (2) Loading of XML data into a relationd data warehouses The loading
operation will have to adhere to the condraints in the relationa schema The data in the
XML data could contain extraneous characters like quotation marks that need to be
removed before loading into the relationa tables. (3) Automatic cregtion of nested XML
documents. A structured XML document has to be recreated from the relational data
obtained as a result of a SQL query. To achieve nesting in the created XML document
would involve additiond processng.

The rest of the thess is composed as follows. Chapter 2 provides an overview of
XML and related technologies. Chapter 3 describes the IWiz architecture and in
paticular the warehouse manager component. Chapter 4 concentrates on  our
implementation of the XML toolkit and its integration in the Wiz sysem. Chepter 5
performs an anadyss of the implementation, and Chapter 6 concludes the thess with the

summary of our accomplishments and issues to be considered in future releases.

www.manaraa.com



CHAPTER 2
RELATED RESEARCH

2.1. XML

Among the various representations to modd semidructured datas XML has clearly
emerged as the frontrunner. XML darted as a language to represent hierarchica
semantics of text data, but is now enriched with extensive APIs, tools such as parsers, and
presentation mechanisms, making it into an ided data modd for semistructured data
XML condsts of a set of tags and declarations, but rather than being concerned with
formatting information like HTML, it focuses on the data and its relaions to other daa
Some important features of XML that are making it popular are the following [11]:

XML isaplan ASCII text file making it platform independent.

XML is sdf-describing: Each data lement has a descriptive tag.  Using these tags,

the document dtructure can be extracted without knowledge of the doman or a

document description.

XML is extensble by dlowing the crestion of new tags. This supports new
customized gpplications such as MahML, Chemica ML, etc.

XML can represent reationships between concepts and maintan them in a
hierarchica fashion.

XML dlows recursive definitions, as well as multiple occurrences of an eement.

The gtructure of an XML document can be described using DTD or XML schema.

www.manaraa.com



<?xm version="1.0"?>
<bi bl i ography>
<book>
<title>"Professional XM"</title>
<aut hor >
<firstname>Mar k</firstname>
<l ast name>Bi r beck</| ast name>
</ aut hor >
<aut hor >
<l ast nane>Ander son</ | ast name>
</ aut hor >
<publ i sher >
<name>W ox Press Ltd</name>
</ publi sher>
<year >2000</ year >
</ book>
<article type = "XWM.">
<aut hor >
<firstname>Sudar shan</firstname>
<l ast name>Chawat he</ | ast name>
</ aut hor >
<title>Describing and Mani pulating XM. Data</title>
<year >1999</year >
<shortversion> This paper presents a brief overview of
dat a managenment using the Extensible Markup
Language(XM.). It presents the basics of XM
and the DTDs used to constrain XM. data, and
descri bes netadata nmanagement using RDF.
</shortversion>
</article>
</ bi bl i oar anhv>

Figure 2.1: Example of an XML documen.

2.1.1. Basics

The Extensble Markup Language (XML) is a subset of SGML [12]. XML is a
markup language. Markup tags can convey semantics of the data included between the
tags, specid processng ingructions for gpplications and references to other data elements
gther internd or externd; nested markup, in the form of tags, describes the structure of
an XML document.

The XML document in Figure 2.1 illudrates a set of bibliographic information
conssing of books and articles, each with its own specific structure.  Tags define the
semantic information and the data is enclosed between them. For example in Figure 2.1,
<year > representsthe tag information and “2000” denotes the data value.

The fundamenta dructure composing an XML document is the element. A
document has a root edement that can contain other eements. Elements can contain

characterpdatagandpaixiliary sructures or they can be empty. All XML data must be

www.manaraa.com



contained within dements. Examples of dements in Figure 2.1 are <bi bl i ogr aphy>,
<title> ad <l astnanme>. Attributes can be used to represent smple information
about dements, which are name-value pairs attached to an element. Attributes are often
used to store the element's metadata.  Attributes are not alowed to be nested, they can be
only be smple character drings The dement <articl e> in our example has an
atribute't y pe" with an associated datavalue "XM.. "
2.1.2.DTDs

To specify the dructure and permissble vaues in XML documents, a Document
Type Ddfinition (DTD) is used. Thus the DTD in XML is very dmilar to a schema in a
relational database. It describes a forma grammar for the XML document. Elements are

defined usng the <! ELEMENT> tag, atributes are defined usng the <! ATTLI ST>

tag.

<?xm version="1.0"?>
<! DOCTYPE bi bl i ography [
<! ELEMENT bi bl i ography (book|article)*>
<! ELEMENT book (title, author+, editor?, publisher?, year)>
<l ELEMENT article (author+, title, year ,(shortversion|longversion)?)>
<I ATTLI ST article type CDATA #REQU RED
nont h CDATA #l| MPLI ED>
<! ELEMENT title (#PCDATA)>
<! ELEMENT aut hor (firstname?, |astnane)>
<! ELEMENT edi tor (#PCDATA) >
<! ELEMENT publisher (nanme, address?)>
<! ELEMENT year (#PCDATA) >
<! ELEMENT firstname (#PCDATA)>
<! ELEMENT | ast nane (#PCDATA) >
<! ELEMENT nane (#PCDATA) >
<! ELEMENT address (#PCDATA) >
<! ELEMENT shortversion (#PCDATA) >
<! ELEMENT | ongversi on (#PCDATA) >
1>

Figure 2.2: A sample DTD representing bibliographic information

When a wdl-formed XML document conforms to a DTD, the document is called
valid with respect to that DTD. Figure 2.2 presents a DTD that can be used to vaidate the

XML document in Figure 2.1.

www.manaraa.com



The DTD can ds0 be used to specify the cadindity of the dements. The
following explict cadindity operators are avalable “?' dands for “"zero-or-one™ “*”
for "zero-or-more' and “+’ for "one-or-more” The default cardindity of one is assumed
when none of these operators are used. The operator “|” between dements is used to
denote the appearance of one of the dements in the document. In our example in Figure
2.1, a book can contain one or more aut hor child dements, must have a child dement
named ti t | e, and the publ i sher information can be missng. Order is an important
consderation in XML documents, the child dements in the document must be present in
the order specified in the DTD for this document. For example, a book dement with a
year child dement as the firg child will not be conddered a pat of a vdid XML
document conforming to the DTD in Figure 2.2.

The entire DTD dructure can be placed in the beginning of the associated XML
document or in a separate location, in which case the document contains only a
<! DOCTYPE> tag followed by the root dement name and the location of the DTD filein
form of a URI. Separation of a schema and data permits multiple XML documents to
refer to thesame DTD.

At the moment of writing, a DTD is the only officidly approved mechanism to
express and redtrict the structure of XML documents. There are obvious drawbacks to
DTDs Ther syntax is different from the XML syntax (this is one reason why most
parsers do not provide programmatical access to DTD dructure). In addition, DTDs do
not provide any inherent support for datatypes or inheritance. Findly, the format of

cardinality declarations permits only coarse-grained specifications.

www.manaraa.com



<schema ...>
<el ement nanme = "bi bl i ography"
type = "string"
m nCccurs = "0"
maxCccurs = "unbounded" >
<type>
<group order = choice>
<el ement type = "book">
</ el ement >
<el enent type = "article">
<attribute nane = "type" type ="string">
<attribute nane = "nonth"
type = "integer"
default = "1">
</ el ement >
</ gr oup>
</type>
</ el ement >
</ schema>

Figure 2.3: An XML Schema representing the bibliographic information in the sample
DTD.

W3C has recognized these exigting problems with DTDs and has been working on
new specifications caled XML Schema snce 1999 [13-14]. In March 2001, XML
schema has been advanced to the proposed recommendation status.  Eventudly, this new
data definition mechanism will have features like srong typing and support for deata
types. Proposed data types include types currently present in XML 1.0 and additiona
data types such as boolean, float, double, integer, URI and date types. In future systems,
XML schema will provide a better integration of XML and exiding perssent storage
data models.

2.1.3. APIsfor Processing XML Documents

The two aternative ways to access contents of an XML document from a program
are the tree-based approach and the event-based approach. In the tree-based approach, an
internd tree Sructure is created that contains the entire XML document in memory. An
goplication program can now fredy manipulate any part of the document. In case of the
event-based approach, an XML document is scanned, and the programmer is notified

about any sgnificant events such as start or end of a particular tag that are encountered

www.manaraa.com



10

during scaning.  The redizaions of these gpproaches that have gained widespread
popularity are the Document Object Mode (implementing the tree-based model) and the
Simple AP for XML (in case of the event-based mode!).

The Document Object Model (DOM) specifications are produced by W3C like
most of the XML-related technologiess The DOM Level 1 Recommendation dates back
to October 1, 1998 [15]. The W3C has dso come up with a Level 2 Recommendation for
the DOM modd [16]. DOM is a language- and platform-neutra definition and specifies
the APIsfor the objects participating in the tree model.

The Smple APl for XML (SAX) represents a different approach to parsng XML
documents. A SAX parser does not creste a data Structure for the parsed XML file.
Ingtead, a SAX parser gives the programmer the freedom to interpret the information
from the parser, as it becomes avalable. The parser notifies the program when a
document darts and ends, an dement dats and ends and when a text portion of a
document darts. The programmer is free to build hisher own data dSructure for the
information encountered or to process the information in some other ways.

As we have seen, both approaches have their own kenefits and drawbacks. The
decision to use one or the other should be based on a thorough assessment of gpplication

and system requirements.

2.2. XML Query Languages

The W3 consortium is in the process of standardizing a query language for XML
based on the XML query dgebra. From the semistructured community, three languages
have emerged for querying XML data XML-QL [17], YATL [18] and Lord [19]. The
document processng community has developed XQL [20], which is more suitable for

guerying documents and searching for text. For the IWiz sysem, we use an

www.manaraa.com



11

implementation of XML-QL by AT&T Labs The following section discusses the syntax
and features provided by the XML-QL language.

XML-QL has severd notable features [21]. It can extract data from the existing
XML documents and congtruct new documents. XML-QL is “reationa complete’; i.e,
it can express joins. Also, database techniques for query optimization, cost estimation and
query rewriting could be extended to XML-QL. Transformation of data from one DTD to
a different DTD can be eadly achieved. Findly, it can be used for integration of multiple
XML data sources.

In XML-QL, dl the conditions are specified usng a <WHERE> clause and the
format of the resulting document is obtained from the <CONSTRUCT> cdause. The
dructure specified in the <WHERE> clause must conform to the structure of the XML
document that is queried. Tag-dements are bound usng the “$’ symbol to digtinguish
them from gring literds and can be used in the <CONSTRUCT> clause or in @nditiond
filters. Join conditions can be specified implicitly or explicitly. New tags can be created
in the resulting document by usng them in the <CONSTRUCT> clause. XML-QL uses
element patterns to match data in an XML document, usng the structure in the <WHERE>
clause. There is condderable amount of gmilarity between XML-QL and other query
languages. In particular, conddering SQL, one can notice that the “WHERE’ dause
goecifying the condition in SQL has the same functiondity as the <WHERE> clause in
XML-QL. Jud like “AS’ can be used to rename results in SQL, the <CONSTRUCT>
clause can be used to create new tags and rename results. The XML document specified
usng the “IN” dause in XML-QL is like the set of tables represented using the “FROM”

clausein SQL.

www.manaraa.com



12

2.3. Data Warehousing

User Queries

\ l /
-
Data
Warehouse
~ -
arehouse Manager .
Repository

A

{3

>
Data extractor Dataextractor Data extractor

<> N < O
@

Figure 2.4: Generic warehousing architecture

Ancther technology related to this research is data warehousng. A data
warehouse is a repodtory of integrated information from digtributed, autonomous and
possibly heterogeneous, sources. In the case of data warehousing systems [22-23], the
warehouse manager loads and mantans the data warehouse, which is usudly, a
relaionad database, in advance using the metadata repodtory. Figure 2.4 shows the
generic architecture of such a sysem. This is dso commonly referred to as the eager or
in-advance approach to data integration. Each source has a data extractor wrapped
around it. This data warehouse is then queried and results are returned to the user. It
represents a large volume of data that is gored in a single repository. The data warehouse
can be optimized for sorage depending on the transactions. Usudly most of the loading

into,the data warehouse will involve gppending of new information and fewer updates.

www.manaraa.com



13

Thus the data warehouse serves as a cache with high query performance. The toolkit uses
the data warehousing gpproach. Some of the key issues in this approach are the schema

creation of the data warehouse, data loading and maintenance.

2.4. Mapping DTDs into Relational Schemas

The input queries and mantenance of data influence the schema for the data
warehouse. The schema cregtion plays a big role in the efficiency of the data warehouse.
The dtored data can then be mined for information. Some of the agorithms for schema
cregtion are asfollows:

Edge Approach [24]: The XML document is viewed as a grgph with no didinction
between attributes and subdements. A table “Edge”’ is created with this schema (edge
source, ordind, name, flag, target). This table stores the tag information of the XML
document. A separate “Values’ table is created that has the schema as (target, vaue) to
gore the data contained in the XML document. This method proposes a smple scheme
for trandating an XML document to a relationd table but is inefficent due to the
redundancy in the schema cregtion.

Bagic-Inlining [25]: Every dement in the DTD is mapped to a relaion table and dements
mapped to a separate table inline as many of their descendants into the same table. In
such a scheme, a particular dement may be present in severd tables. While loading the
data element from an XML document, severa tables have to be loaded with the data
vadue. Also, in this schema cregtion scheme, a smple query would require severd join
conditions. Due to these inefficiencies, this gpproach is not suitable.

Shared-Inlining [25]: This approach tries to solve the problems in the “Basic-Inlining”
goproach by sharing relaiond tables. The principad idea in this method is to cregte a

DTD greph and cresie separate reation tables for nodes that have an in-degree ether

www.manaraa.com



14

equa to zero or greater than one. Elements being involved in a one-many reationship,
which can be known by the presence of a“*” or a“+ are dso mapped to a separate table.
Thus in this scheme, a paticular data item will be loaded only into a single relationd
table. But this scheme may not be gppropriate when you consder data maintenance for
the following reason. Since data eements have been inlined, when maintenance queries
are generated, there is an overlgp of concepts from the XML domain. Thus a table
representing book information could have possbly a field for the author's name. Hence,
this approach is not used.

Hybrid-Inlining [25]: This method is a dight modification of the “Shared-Inlining”
approach. In this scheme, dements with degree grester than one are aso inlined as
relaiond attributes in the table created for the parent. This does reduce the join
conditions but has Smilar maintenance problems as “Shared-Inlining” scheme.

Our gpproach uses inlining of child nodes that do not have children or datributes,
without congdering the degree of the node. As reaiond tables contain only relaed
fields, such ardationad mapping provides more clarity to the system.

All the condraints expressed explicitly and derivable have to be trandated to the data
warehouse schema [26]. The data warehouse schema crestion agorithm can have
additiond festures to incorporate incrementa changes to the schema of the underlying

SOurces.

2.5. Data L oading and Maintenance

An important concern in usng the warehousing gpproach is deding with updates.
The warehouse data has to be refreshed so that it can be consstent with the sources.
Some smple techniques propose that the system goes off-line so tha the entire

warehouse can be refreshed with new data This is obvioudy very inefficient for large

www.manaraa.com



15

data warehouses. There are other algorithms proposed to detect changes in the sources,
escdate them to the integrator, which reflects it in the data warehouse [27-28]. Some of
the loading schemes are asfollows:

In the load-append drategy, the input data is loaded into the various relationd
tables without checking if the same data actudly exigs in the data warehouse. This is a
smple technique but redundat tuples can be created. This is just like the “insert”
operation in relational databases.

The load-merge draegy involves merging of the input data adong with the
exiding daa in the warehouse minimizing the redundancy. This operation is comparable
to the “update” operation in relationa databases.

In the load-erase srategy the content of the data warehouse is removed and then
loaded with the incoming data. Thus the older content is totaly removed and fresh data is
loaded. Such an operation could be usdess if the incoming data set is much lesser than
the contents of the data warehouse. The operation is andogous to a “delete’ operation

followed by an “insert” operation.

2.6. XML Management Sysems

There are severd commercid products avalable to manipulate XML such as
XML parsers, XML editors and other tools. We will briefly highlight the festures of a
faw commercidly avalable and research oriented XML management systems, thus,
laying a foundation to the set of functions we want to provide in our toolkit.

2.6.1. Oracle XSU

The Oracle XML-SQL Utility (XSU) is an XML application that can be used for XML
content and data management. The underlying persstent storage could be an object-

relaiona or a relational database like Oracle 8i. XML data is stored as LOB (Large

www.manaraa.com



16

ungructured object) in reationa tables and XML documents are stored as CLOB
(Character Large Objects). XSU can dso be accessed from a serviet. Some of the features
are asfollows[29]:

Oracle XSU can generate an XML document from SQL results.

It can store SQL results from XML inserts, updates and deletes.

There are three different interfaces provided to access XSU: command line front end,
Java APl and PL/SQL API.

However, there are a few shortcomings that need to be addressed. The database schema
has to be defined manudly. The data loading assumes that the dements and attributes in
the document are columns in a single table. To load multiple tables, the input document
has to be trandated into severd documents, usng XSL or any other language, and
individudly loaded into the various tables. Also, the data in the document has to be
gored in child nodes and not as attributes. In the XML document generated, tags are not
automaticaly nested.

2.6.2. GMD-IPS XOL Engine

This is a Java based dtorage and query application that uses two mgor technologies:
perssent implementation of the DOM objects and XQL language [30]. Some of the
features are asfollows:

XML documents are parsed once and stored as persistent DOM (PDOM).

The implementation can swap DOM nodes to disk, while handling large DOM trees
and hence main memory isnot alimit to file size.

There are built-in caching and garbage collection mechanisms.
Multi-threaded access of the PDOM fileis alowed.
However the implementation has limitations. A PDOM dructure is created for each

inceming-XMkdocument. The XML document to be queried has to be specified. An

www.manaraa.com



17

update operation would increase the PDOM file sze and requires a de-fragmentation
operation to be initiated. Smilarly, a delete operation crestes wasted space in the file,
which has to be reclaimed using the garbage collection operation.

2.6.3. LORE

LORE is a DBMS for managing semistructured data developed in the Stanford
Univergty. It was initidly developed for the OEM data model to manage semistructured
data but later migrated to XML. A few of the mention-able features are as follows:

A query language LOREL with a cost-based optimizer is used. The prototype is
complete with indexing techniques multi-user support, logging and recovery.
Daaguides, a dructurd summary of dl database paths, is generated; thus dlowing free
form input data.

As mentioned in the web ste, LORE needs some more development in the areas of
sorage schemes and comparison operators. The LORE system currently does not use
DTDs and does not encode sub-eements ordering.

Two of the other prominent management systemsthat are available are

Microsoft SQL Server [31] and Strudel Web site management system [32].

www.manaraa.com



CHAPTER 3
THE IWIZ PROJECT

The XML toolkit is an integral part of the IWiz system. IWiz has the following
main modules as shown in the Figure 3.1 A Query Browsing Interface that serves as the
user interface. The Warehouse Manager as shown in the top tier of the architecture
mantans the data warehouse. A Mediator rewrites the user query to source-pecific
terms and resolves conflicts in the returned results. Each source is connected to Wiz via
a wrapper (DRE) for querying the data and restructuring the results The interactions
between the various modules are as shown in Figure 3.1. A brief description of the

modules in the IWiz prototype with their functionality and inputs is provided below.

Front-end -
Browsing and HTTP /é A
Querying W
> User Query '
SQL(internal :
Wiz QL(internal)
Repository /( )
Warehouse R A
Manager :l?
A
: Query Result
User Query: ~
y
| Mediator |
P €« V-
E R — [ . uu::‘.‘::;. ..... -
DRE : DRE | DRE
| s n
: : Sources — 5

Figure 3.1: IWiz Architecture

18

www.manaraa.com



19

The Query Browsing interface (QBI) presents an integrated view of the IWiz
gobal schema. The QBI is used to generate a user query, which is then sent to the
warehouse manager component.

The Warehouse Manager (WHM) component, as shown in Figure 3.2, maintains
the IWiz Repostory which is an Oracle 8 database. The WHM has two maor phases of
operation: a built-time phase during which the schema creator module of the XML toolkit
creates the script file to create the relationd schema for the data warehouse using the
DTD desription of the globd 1Wiz schema as input. The Database Connection Engine
(DBCE) executes the script file to complete the schema generation process. This is
followed by the run-time or query phase during which WHM accepts and processes
XML-QL queries againg the underlying relationa database; the same query may aso be

sent to the mediator in case the contents of the data warehouse are not up-to-date.

User Query
UQ)

Run-time Phase W H M Query Result
XML Doc

UQ translated to SQL

Query Result

A

] H
uQ; Maintenance ; MQ ' uQ
f=-""3 Query Result | Result
(MQ) XML Doc XML Doc

Figure 3.2: WHM Architecture

www.manaraa.com



20

The WHM server dso provides the Ontology contents to the Mediator and the
Wrapper. When the XML-QL query is provided to the WHM, the query is checked if it
could be stidied from the contents of the data warehouse. The XML-QL is then
trandated to SQL and executed againgt the warehouse by the DBCE. The XML-QL to
SQL conversion is part of another ongoing research project in the Database Research and
Devdopment Center a the Universty of Forida The Réationd-to-XML-Engine
component of the toolkit could be used to trandate the reational result set to an XML
document. In case the user query cannot be sdisfied from the contents of the data
warehouse, the XML-QL query and a maintenance query ae sent to the Mediator
component. After the Data Merge Engine returns the resulting document generated by
merging the information from the various sources, the WHM presents it to the QBI that
disolays it to the user. The XML Loader (DLE) is invoked if the merged document is an
effect of a maintenance query. The DLE parses the document and generates the insert
commands. The DBCE is invoked and the data is loaded into the warehouse. All the
interactions with the data warehouse are interfaced through the DBCE.

The Mediator component has two modules. the Query Restructuring Engine
(QRE) and the Data Merge Engine (DME). The QRE during the built-time phase gets the
knowledge about the data exiding in the various data sources. The QRE, using this
information, then splits the input query into source specific queries in terms of the globa
schema terms gppending the source names to the query id. It aso generates the query
plan that is used to merge the dita from the sources by the DME. The DME merges the
results from the various sources removing duplicates and trandforms them to a single

XML document. The DME returns the merged document to the WHM.

www.manaraa.com



21

Each source in the sysem has a Daa Resructuring Engine (DRE) wrapped
aound it. The DRE is respongble for trandating the input query in terms of the globd
schema terms to the source specific terms and converting the source data returned from

the sources to the globa schema terms. The DRE returns the resuts from each source to

the DME.

www.manharaa.com




CHAPTER 4

XML TOOLKIT: ARCHITECTURE AND IMPLEMENTATION

This chepter discusses about the reational gpproach, the advantages and dis-

advantages of this approach, the architecture and implementation details of the XML

toolkit. It describes the dgorithm implemented in the various modules of the toolkit. The

toolkit is implemented usng Java (SDK 1.3) from Sun Microsysems. Some of the other

software tools and packages used in the implementation are the XML Parser from Oracle

verson 2.0.2.9, Oracle 8i and the Oracle JDBC driver version 2.

4.1. Managing XML Datain IWiz

The popularity of XML as a new dtandard for data representation and exchange

on the Web necesstates the development of an XML management sysem. XML

management systems can be broadly classfied as XML document management systems

and XML daa management sysems [33]. In the former case, the dructure is very

irregular and is usudly difficult for amachine to interpret the data. Some of the examples

Global schema DTD

Schema Creator

S D

Store a}(MLdac XML-QL I
Query

User Interface ]

l

l I XML results

Loader
(DLE)

XML doc
Generator
(RXE)

=} SOLquey

] 1

| DBCE (Database Connection Engine) |

Relational Results

Oracle 8i

Figure 4.1: Proposed Architecture of XML data management in IWiz.

22

www.manaraa.com



23

could be advertisements and HTML documents. Systems to handle XML documents are
aso known as content management systems [34]. The focus of this gpproach is however
on XML data management. In this datacentric gpproach XML is used as the
representation format. Many of the documents crested in red-world gpplications such as
flight schedules and sdes order are examples of this classfication. The XML daa
management system should be able to provide a peragtent store for XML data usng a
relational, object database or an object relationa database. The system should be able to
provide an interface to transfer data between the database and XML. All the data can be
dored in a sngle centraized repostory, thus having controlled redundancy. The data can
be queried and a merged view can be created.

The conceptua architecture for our proposed XML data management system is
shown in Figure 4.1. If a globa schema exigts it can be used to cregte the schema for the
perssent dsore. An additional feature of such a system will be to automate schema
cregtion for the perssent storage. There is usudly a user interface that is used to ether
load an XML document into the data store or query the stored data The loader
component gores the data contained in the incoming document in the underlying deata
dore. The data maintenance is generaly built as part of the loader. The XML document
generator module accepts the user query, transforms it to the language of the underlying
data store, executes it and then formats the relationa results as an XML document and

presentsit to the user.

4.2. Rationa for Usng an RDBMS as Our Storage M anagement

In this toolkit, the persgent storage is achieved usdng the rediond Oracle 8i

database. While there are systems that use other techniques such as using semi-structured

www.manaraa.com



24

data dores, for example in Lore, the question of whether which of them is the best
goproach remains. The downsde of usng these other techniques is tha they turn their
back on several years of work invested in relationd database technology. When semi-
structured data becomes more widdly popular and is machine processed, the management
systems will require efficient query processng and dorage features. Reaionad systems
currently are the best in providing these features. Specificaly, they have the following
advantages.

Centrdlized merged datac The data warehouse is a single repodtory containing the
data due to severa loaded documents and is not specific to any input XML document.

Scalahility: With the increase in contents RDBM S provide one of the best scaling.

Standard query languages. Using worldwide accepted query languages with efficient
querying capabilities

Concurrency Control, Data recovery and management of secondary storage features.
On the other hand, usng a rediond daabase management sysem has the following
drawbacks:

In order to satisfy a query, the join sequences could be an nrway join leading to an
inefficient execution.

An RDBMD requires arigid schema definition.

4.3. Functiona Specifications

Next we proceed to derive the set of functional specifications that the toolkit must
saisy. Firdly, the toolkit must assst in the reationd schema credion. Idedly this
process must be automated. The schema cregtion should be derived from a globa schema
that binds the incoming XML documents. For example, a DTD can be used to describe

the globd schema definition. The relationa schema crested must include the cardindity

www.manaraa.com



25

condraints specified in the DTD. There should be an interface to accept an XML
document as input and load the data contained into the various reaiond tables.
Similarly, the toolkit should have the capability to execute queries and wrgp the results as
XML documents. Nesting of tags and cresting XML documents conforming to the globa

schemawould provide additiond features.

DTD file Key Infofile

y A
WHM SERVER

Notify Ontology Object Ready

XML toolkit

Schema Creator Engine| [Database Connection Enging
(SCE) (DBCE)

DDL commands for Schema creation

JDBC

MDR || DWH

Figure 4.2 Built-time architecture of the XML toolkit

4.4. Architecture Overview

From the st of functiondl specifications above we can derive the architecture of
the XML toolkit which is divided into a built-time and run-time phase. The built-time
phase creates the prdiminary steps- setting up the schema and the server so that in the

WHM can accept and process user queries during the run-time phase.

www.manaraa.com



26

User Query

A

WHM SERVER

SQL XML doc

Relational-to-XML XML Loader M ED
(RXE) (DLE)

“ DML statementy XML toolkit
Database connection
engine
(DBCF)
7a

ABC

- N <ol

Fgure 4.3: Run-time architecture of the XML toolkit

During the built-time phase of the WHM, as shown in Figure 4.2, the Schema
creator engine (SCE) and the database connection engine (DBCE) of the toolkit are used.
The input DTD file representing the Wiz globa schema is parsed and the script file to
generate the relationd tables is created. The script file is then passed on to the DBCE,
which executes it, and the relationa schema is setup. The Joindble Keys file, which is the
other input to this module, is stored in a separate system table. The WHM is implemented
as a sarve that can accept XML-QL user queries, trandate them to SQL, run them
againg the warehouse and return the results as an XML document to the user. This dso
sarves as an Ontology server that provides the Ontology as a DOM object when invoked
by the Mediator and the Wrapper. After parsng the DTD, the Ontology server notifies
the Wrapper and the Mediator. After being notified, the wrapper and mediator request for

the ontology DOM object to begin ther built-time phase.

www.manaraa.com



27

In the run-time phase, as shown in Figure 4.3, the Reationd-to-XML-engine
(RXE), XML data loader engine (DLE) and the DBCE components of the toolkit are
used. The decison engine module of the WHM anayzes the input XML-QL user query.
If the input query could be sttisfied in the warehouse, the user query is trandated into
SQL by the XML-QL to SQL module of the WHM. The SQL query generated is then
executed in the data warehouse using the DBCE of the toolkit. The reationd results are
then converted to an XML document object by the RXE and returned to the QBI
interface. If the query cannot be satisfied in the data warehouse, due to the absence or
gaeness of data then a maintenance query is generated and both the wser query and the
maintenance query are sent to the mediator. The maintenance query generates results that
are used to load the data warehouse S0 that in future, smilar queries could be sdisfied
directly from the warehouse. The DLE component of the toolkit is used to load the data
The XML document generated due to the user query is returned to the QBI interface,

which presentsit to the user.

<IELEMENT Bib (Book,Article )>

<IELEMENT Book (Author+,Title,Y ear,Editor*,|SBN)>
<IELEMENT Article (Author*,TitleY ear,Editor?)>
<IELEMENT Author (firstname?,lastname,address)>
<IELEMENT Editor (lastname)>

<IELEMENT Title (#PCDATA) >

<IELEMENT ISBN (#PCDATA) >

<IELEMENT Year (#PCDATA)>

<IELEMENT firstname (#PCDATA)>

<IELEMENT lastname (#°CDATA)>

<IELEMENT address (#PCDATA) >

Figure 4.4: Input DTD to the Schema creator engine (SCE)

www.manaraa.com



28

4.5. Schema Creator Engine (SCE)

The input to this module is the DTD file and Joingble Keys file. The dgorithm for
schema creation views the DTD as a graph and nodes are distinguished based on the path
from the parent node and not based on the tag names. For example, the paths of the
“Year” dement in FHgure 4.4; “Bib/Article/Year” and “Bib/Book/Year” are different. The
DTD file is parsed by the Oracle XML parser and an nary tree is crested. The module
begins traverdang this tree beginning a the root node identifying the various ‘CONCEPT”
nodes. An dement in the DTD is a “CONCEPT” if it stisfies one or more of the
following conditions:

It has one or more attributes or

It has one or more children or

It is involved in a one-many reaionship with some other dement in the DTD, which

can be inferred by the presence of the cardindity operators, “*” or “+”, following this

node when it appears as a child node.

Every “CONCEPT” in the DTD is mapped to a rdationd table and dl child eements
that are not “CONCEPT” (leef), are mapped as relationd attributes in the table. A hash
table containing type-information about each edement and attribute is crested while
processing the DTD. The type can be a ‘"CONCEPT”, “Inlined-Attribute’ or a ‘Inlined-
Child”. This information is dso persgently dored in a sysem table, which is later
retrieved and used by the loader module. The script to creste a relaiond table with the
same name as the “CONCEPT” node is generated and gppended to a globa script file.
Every table created has a primary key. The name of every table created is stored in a hash
table. A table is created only if it is aisent in this hash table. This process is recursvely

performed on al the children of this dement passing the Parent-dement name. All the

www.manaraa.com



29

parent-child raionships between the dements in the DTD are mapped as a generd min

raion and a separate table is created to Sore this information. The relation tables

contain two fieds with reference to the corresponding field in the parent and child table.

The forma of naming the table is

“<Parent-dlement> _ <Child_dement>*. The foreign

key references are gppended to the globd script file. This script file is finaly executed,

usng the DBCE, credting the various tables and the foreign key condraints. The other

input to this module is the Joinable Keys file. This is used by the QRE module of the

mediator to detect join sequences for the various e ementsin the globa Ontology DTD.

Bib.Book \t
Bib.Book \t
Bib.Article \t

1 \t
2 \t
1 \t

ISBN
Title
Title

Figure 4.5: Joinable Keysfile format

Bib

Bib PK Id

Bib_Book

Bib_Article

||

Book_FK_Id, Bib_FK_Id

Article FK_Id, Bib_FK_Id

Book Author Article
Book PK Id,Title,Year,|SBN Author PK_Id, firstname, lastname,address Article PK_IdTitleYear
— = = | I = - =
t— IT 1t l |
Book Author Book Editor Article Editor Article Author

Author_FK_Id, Book_FK_Id | | Editor_FK_Id,Book_FK_Id

Editor_FK_Id, Article FK_Id

Author_FK_Id,Article FK_Id

L—I

Editor

>

Editor PK Id lastname

Figure 4.6: Tables created by the SCE for the input DTD in Figure 4.4.

The format of thisfileis as shown in Figure 4.5. It contains the path and joinable key for

the “CONCEPT” dementsin the DTD.

www.manaraa.com



30

Tag_Info Foreign_Key_Info Timestamp_Info
Tag_Name,Parent_Tag, Type Tag_Name, Source_Field_Name, Tag_Name, Modified_Timestamp
Referenced_Table,

Referenced_Field_Name

Joinable_Keys Info Primay_Keys Info Ontology_Contents

Tag_Name, Rank, Join_Attribute Table_Name, Primarykey_Value DTD_contents

Figure 4.7: System tables created by the SCE.

Figure 4.6 gives the set of tables crested for the DTD in Figure 4.4. The system tables, as
shown in Figure 4.7, are aso created by the SCE. The Ontology file contents are stored in
the “Ontology_Contents’ system table. It is later retrieved, parsed into a DTD object and
provided to the QRE and the WRP modules. The Joinable Keys file is stored in the
“Joindble Keys Info” sysem table. The “Primary Keys Info” and the “Tag Info” are

used by the loader module.

1. Theinput DTD fileis parsed and a DTD DOM object is created.
2. Invoke method makeRelations (Root,”-") passing the root of the DTD and ‘-’ to denote that it has no
parent..
3. A nodeisaCONCEPT if one of thefollowing conditions holds:
3.1. It has 1 or more attributes.
3.2. It has 1 or more children nodes.
3.3.Ithasa‘*’ or a‘+ when it appears as a child of some other node.
4. Method makeRel ations(Node current_node, String Parent)
4.1 Check if the current node in the tree is a CONCEPT.
4.1.1. Check if table is already created for the current node in the hash table.
4111 If false
4.1.1.1.1 Generate the script file to create atable having with the current_node name and make
the attributes, and children of the current node which are not Concepts, fieldsin the table.
4.1.1.1.2 Generate the script file to create the ‘ Par-Child’ relational table using the Parent name.
4.1.1.1.3. Storethe table names for whom the script file are generated in a hash table
4.1.1.1.4. Store the foreign key constraints in a separate vector.
4.2. Recursively invoke the makeRelations method passing the children of the current node.
5. Append the foreign key constraints to the script file

6. Execute the script file to generate the ‘CONCEPT' tables, the ‘ Par-Child’ tables and the foreign key
constraints.

Figure 4.8: Pseudo code of the SCE

www.manaraa.com



31

The decison engine module of the WHM uses the “Foreign Keys Info” and the

“TimeStamp_Info” system tables.

<?xml version ="1.0"?>
<Bib>
<Book>
<Author>
<firstname> Jack </firstname>
<lastname> James</lastname>
<address> #123, 8th Avenue</address>
</Author>
<Author>
<lastname> Thomson</lastname>
<address> #149, 18th Avenue</address>
</Author>
<Title> XML Manangement Systems </Title>
<Year> 2001 </Year>
<ISBN> 3528463422 </ISBN>
</Book>
<Article>
<Title> XML Toolkits </Title>
<Year> 2001 </Year>
</Article>
</Bib>

Figure 4.9: A sample XML document conforming to the input DTD in Figure 4.4.

2001, 3528463422.

Bib
9
Bib_Book Bib_Article
0,0 0,0
Book Author Article
0, XMLManagement Systems, 0, Jack, James, #123, 8th Avenue 0, XML Toolkits, 2001

1 NULL, Thomson, #149, 18th Avenue

Book_Author

Book_Editor Article_Editor

Article_Author

0,0

10

Editor

Figure 4.10: Contents of the tables after loading the sample XML document in Figure

4.9.

The pseudo-code of the agorithm is shown in Figure 4.8. The SCE dso generates the

script file for creating and dropping the database in the current directory. In case of any

www.manaraa.com



32

network error while accessng the database, the script file can be executed from the

Oracle SQL*Plus window directly to creste the relationa tables.

4.6. XML Data L ocader Enging(DLE)

The loading operation is a trandation from one data modd (XML) to the other
(RDBMS). The data in the XML document is stored as relationd tuples. The XML data
loader module, dso known as the loader, implements the load-append strategy. Figure 4.9
gives an example of an XML document conforming to the DTD shown in Fgure 4.4.
This module takes in an XML document DOM object as input and generates the script
file to load the data into the relationa tables. The loader uses the “Tag Info’ and the
“Primary_Keys Info” system tables. The data from both these tables is loaded into two
hashtables, Tag Info and PK_Vas, s0 tha the database is accessed only once initidly.
The loader darts parsng the DOM object from the root until al the nodes in this nary
tree are traversed. A node that is found to be a “CONCEPT"” triggers loading of a tuple
for the relaiond table with the same name. The schema information is obtained from the
database. The tuple is initidized with null vdues The attributes and children of this node
are examined and the values are loaded into the tuple after matching the relationa fied
name with the dement name. The primary key vdue for this tuple is assgned from the
PK vals table. The children nodes are recursively processed passng the parent-name so
that the foreign key references in the Parent-Child table are setup. The foreign key vaues
for this table is obtained from the PK_vds table as well. The primary key vdue for the
current table is updated in the Primary_Keys Info hashtable only after processing dl it's
children. This script file and the PK_Vas hashtable is passed on to the database

connection engine. The DBCE executes the script file to load the data contained in the

www.manaraa.com



33

XML document DOM object into the database. The hashtable is used to update the
contents of the Primary_Keys Info system table so that if the syssem were to crash, then
the vadues of the primary keys for the loading of the next document would begin with the

correct values.

1. Input isa XML document DOM object.
2. Create the Tag_Info and PK_Vals hashtablefrom the system tables. Make a new hashtable
Table_Names.
3. Invoke the method makeTuple (Root,’-")
4. Method makeTuple(Node current_node,String Parent)
4.1 Check if the current node in the tree isa CONCEPT using the Tag_Info hash table.
4.1.1. If true
4.1.1.1 Match theleaf children names with field namesin the relational table and generate
the script to create atuple using the PK_Vals hashtable.
4.1.1.2 Generate the script file to create atuple for the ‘ Parent_Child’ table.
4.2. Recursively invoke the makeTuple method for the children of the current node.
4.3 Update the primary key value for thistable in the PK_Vals hashtable.
5. Execute the script file to insert the datain the XML document into the relational tables and update the

contents of the Primary_Keys Info system table.

Figure 4.11: Pseudo code of the loader

The tuples generated by the loader and stored in the schema for the document in Figure

4.5 are shown in Figure 4.10. The pseudo code for the loader module isin Figure 4.11.

4.7. Rdationa-to- XML-Engine (RXE)

The input to this module is a SQL query. The query is executed in the data
warehouse and the results are wrapped into an XML document DOM object grouping the
results if the SQL query contains the “Group By” clause. The module obtans the
metedata informetion from the database. The module can creaste the XML document
conforming to the ontology specifications if the peths of each of the resulting tags are

provided. Initidly the RXE looks for the “Group By” clause and dtores the grouping

www.manaraa.com



34

attributes in a vector and a hashtable Grp_hash. The grouping attributes are located in the
resultset and the vaues in the tuples are compared with the value stored in the Grp_hash
hashtable. “GRP By” tags are created for each of them. The new vaues of the grouping
attributes are updated in Grp_hash. Tags are created from the resultset meta data and are
appended to the XML document DOM object. If the SQL query has no “Group By”
clause, the resulting document created has the metadata name as tag name and the tuple
vaue as the data vaue The important feaiure of this module is the ability to creste a
document grouping the results. Every tuple mapped to the XML document contains a

“ROW ID” attribute, which takes the tuple number as vaue.

SELECT Author.firstname, Author.lastname, Author.address, Book.Title, Book.Y ear,
Book.ISBN, Article.Title, Article.Y ear

FROM Bib,Article,Book, Bib_Article, Bib_Book,Author,Book_Author

WHERE Bib.Bib_PK_ID=Bib_Article.Bib_FK_ID and Bib.Bib_PK_ID=Bib_Book.Bib_FK_ID
and Author.Author_PK_ID and Book_Author.Author_FK_ID;

Figure 4.12: SQL query to retrieve books and articles from the data warehouse.

<Result>

<ROW ID="1">
<FIRSTNAME>Jack</FIRSTNAME>
<LASTNAME>James</LASTNAME>
<ADDRESS>#123, 8th Avenue</ADDRESS>
<TITLE>XML Manangement Systems</TITLE>
<YEAR>2001</YEAR>
<ISBN>3528463422</ISBN>
<TITLE>XML Toolkits</TITLE>
<YEAR>2001</YEAR>

</ROW>

<ROW |ID="2">
<FIRSTNAME>NULL</FIRSTNAME>
<LASTNAME>Thomson</LASTNAME>
<ADDRESS>#149, 18th Avenue</ADDRESS>
<TITLE>XML Manangement Systems</TITLE>
<YEAR>2001</YEAR>
<ISBN>3528463422</ISBN>
<TITLE>XML Toolkits</TITLE>
<YEAR>2001</YEAR>

</ROW>

</Result>

Figure 4.13: XML document generated by the Relationd-to- XM L-engine (RXE).

www.manaraa.com



35

The SQL query would have to be generated based on the schema information that can be
known from the sysem tables. The table name is gppended to the fidd name while
retrieving so that it resolves any conflicts that could occur when the same column exists
in both the tables. A join between two concepts in the globa schema can be achieved by
involving the parent-child relationd tables. For example for the SQL query in Figure
4.12, a join has to be performed using the Parent table, Bi b, Book, Arti cl e and the
parent-relational tables Bi b_Articl e and Bi b_Book. The query could include a
“Group By’ clause, but as per the rules of RDBMS require the incluson of the non
aggregateable dtributes present in the sdect clause, in the “Group By’ cdause as wel.
The document created could be nested if the path information about each tag created is
presented to the RXE. The result of a sample SQL, given in Figure 4.12, to extract the

loaded document in Figure 4.9 is shown in Figure 4.13.

1. Input isaSQL query.
2. Check if the query hasa‘GROUPBY’ clause.
2.11f true
2.1.1. Check for al the alias names used for the grouping attributes and store the attribute namesin a
hashtable, Grp_hash and avector Grp_vec.
3. Execute the SQL query using the Database Connection Engine (DBCE)
3.1. Obtain the resultset containing the results of the query.
3.2. Obtain the metadata details of the resultset.
4., Method makeXML ()
4.1. For al thetuplesin the resultset do:
4.1.1. For al the grouping attributesin Grp_Vec.
4.1.1.1. Locate the grouping attribute in the resultset.
4.1.1.2. Obtain the value of the attribute from the hashtable.
4.1.1.3. Compare the value of the grouping attribute in the hashtable and tuple if they differ:
4.1.1.3.1. Create a‘GRP By’ tag and assign the value to it from thetuple.
4.1.1.3.2. Store the new value in the hashtable
4.1.1.3.3. Reset the values of the grouping attributes lower in priority than the current attribute in
Grp_hash.
4.1.1.4. All the other values that are not a part of the grouping attributes are stored as separate tags
created from the metatdata details and appended to the XML document DOM object.
5. Return the XML document DOM object created.

Figure 4.14: Pseudo code of the RXE.

www.manaraa.com



36

The pseudo code for the agorithm is given in Figure 4.14.

4.8. Database Connection Engine (DBCE)

This module provides the database connectivity. It uses Oracle JDBC driver
verson 2.0 to communicate with the database. It provides a set of APl that can be
invoked by the other modules. There is only one instance of the DBCE operating and the
other modules have a reference to it. The DBCE uses a configuretion file to obtain the
database detals. hostname, database name, port number, user name and password. The
DBCE uses the standard JDBC APl classes, “Statement” and “PreparedStatement” to
initiste al connections with the Oracle 8i database engine. All insert operdions ae
implemented as batch operations in order to increese the efficiency of the database
engine.  All the rddiond dtributes have “var char 2” as the type due to inadequate

information in the DTD. Als0, the default fidd Sze is assumed beforehand.

www.manaraa.com



CHAPTER 5
PERFORMANCE EVALUATION

In this chapter, we explain a st of tests to evaluate the performance of our toolkit.
The only XML-processing programs that are benchmarked are severa XML parsers [35].
Up to this point, there is very litle materid discussng the benchmarking of XML data
management systems [36-37]. Among them, Xmach-1 provides the benchmarks based on
web applications, which are not directly gpplicable to the toolkit. Hence, we intend to
demondrate in an informa way the validity, functiondity and performance of the toolkit.
The focus of tex 1 is to andyze the capability of the SCE module to produce
gyntacticdly valid script to generate a rlaiond schema. The gods of test 2 are to study
the correctness and efficiency of the entire toolkit. To illustrate the efficiency, we draw a
comparison between the outputs generated by the XML-QL processor, implemented by
AT&T and the RXE component. Thus, the various aspects of management systems,
schema credtion, data loading and data extraction are tested. Section 5.1 describes the
hardware configuration and software packages used for testing. In Section 5.2, we
explan briefly the tests that were performed. Section 5.3 discusses in detall about the
results, bringing out the limitations. The inputs and outputs to the various components are

illustrated in the Figures 5.1-5.7.

5.1. Exparimenta Setup

All the experiments were carried out on a Pentium 11 233 Mhz processor with 256

MB of main memory running Windows NT 4.0. The toolkit was implemented using Java

37

www.manaraa.com



38

(SDK 1.3) from the Sun Microsystems. Some of the other software tools and packages
used are the XML Parser from Oracle verson 2.0.2.9, Oracle 8i, Oracle JDBC driver
verson 2 and the XML-QL query processor, implementation by AT&T. The DTDs and
XML documents were created usng XML Authority v1.2 and XML indance v 1.1
respectively. All the modules of the toolkit ran in the same address space as the database,

which was ingaled on the same machine to avoid network delays.

<IELEMENT TVSCHEDULE (CHANNEL +)>
<IELEMENT CHANNEL (BANNER, DAY +)>

<IELEMENT BANNER (#PCDATA)>

<IELEMENT DAY ((DATEL, HOLIDAY) | (DATEL, PROGRAMSLOT+))+>
<IELEMENT HOLIDAY (#PCDATA)>

<IELEMENT DATEL (#PCDATA)>

<IELEMENT PROGRAMSLOT (TIME, PROG_TITLE, DESCRIPTION?)>
<IELEMENT TIME (HRS,MINS)>

<IELEMENT HRS (#PCDATA)>

<IELEMENT MINS (#PCDATA)>

<IELEMENT PROG_TITLE (#PCDATA)>

<IELEMENT DESCRIPTION (#PCDATA)>

<IATTLIST TVSCHEDULE NAME CDATA #IMPLIED >

<IATTLIST CHANNEL CHAN CDATA #IMPLIED >

<IATTLIST PROGRAMSLOT VTR CDATA #MPLIED >

Figure5.1: DTD describing the structure of a TV programs guide

TVSCHEDULE (TVSCHEDULE_PK_ID, NAME)

CHANNEL (CHANNEL PK 1D, CHAN,BANNER)

DAY (DAY PK ID)

HOLIDAY(HOLIDAY PK_ID, HOLIDAY)

DATE1(DATEL PK ID, DATEL)

PROGRAMSLOT(PROGRAMSLOT PK_ID, VTR,PROG_TITLE, DESCRIPTION)
TIME(TIME PK_ID, HRS, MINS)
TVSCHEDULE_CHANNEL(CHANNEL_FK_ID, TVSCHEDULE_FK_ID)
CHANNEL_DAY(DAY_FK_ID, CHANNEL_FK_ID)
DAY_DATEL(DATEL FK_ID ,DAY_FK_ID)

DAY_HOLIDAY (HOLIDAY_FK_ID,DAY_FK_ID)
DAY_PROGRAMSLOT(PROGRAMSLOT FK_ID,DAY_FK_ID)
PROGRAMSLOT_TIME(TIME_FK_ID, PROGRAMSLOT_FK_ID)

Figure 5.2: Tables created by the SCE for the TV programs guide DTD

www.manaraa.com



39

5.2. Test Cases

Test 1 gudies the ability of the SCE module to produce a vdid reationd schema
The input DTD is supplied to he SCE that creates the relationa schema. The input DTD
describes the dructure of a TV programs guide. Figure 5.1 shows the input DTD. Figure

5.2 displaysthe rdationd schemathat correspondsto the DTD.

<?xml version="1.0"?>
<TVSCHEDULE NAME="SPEC">
<CHANNEL CHAN="7">
<BANNER> ABC </BANNER>
<DAY>
<DATE1> 04-24-2001 </DATE1>
<PROGRAMSLOT VTR="FLEXIBLE">
<TIME>
<HRS> 07 </HRS>
<MINS> 00</MINS>
</TIME>
<PROG_TITLE> SPIN CITY </PROG_TITLE>
<DESCRIPTION> COMEDY SERIAL </DESCRIPTION>
</PROGRAMSLOT>

<PROGRAMSLOT VTR=“FIXED">

<TIME>
<HRS> 07 </HRS>
<MINS> 30 </MINS>

</TIME>

<PROG_TITLE> DAILY NEWS </PROG_TITLE>

</PROGRAMSLOT>
</DAY>

</ICHANNEL>

</TVSCHEDULE>

Fgure 5.3: An example XML document conforming to the TV programs guide DTD.

Test 2 focuses on proving the correctness of the entire toolkit. Initidly a relationa
schema is created usng the SCE component. Then, a sample XML document is queried
usng the XML-QL processor and an output XML document & created. The same XML
document is loaded into the database. The input XML-QL query is trandated to SQL.
The correctness of the toolkit is proved when an equivdent XML document is created by

RXE. Even though efficiency is not the primary focus, this aspect of the toolkit can be

www.manaraa.com



40

illugrated by comparing the output of the XML-QL processor, implemented by AT&T
and the output of the RXE. To illudrate, the XML-QL processor is used to query an
XML document. The XML document being queried is displayed in Figure 5.3. The
XML-QL processor expects the input query to be stored in a file and then generated an
output file containing the results. The XML-QL processor is invoked from the command-
lineasfollows

xmlgl -g <query_filename> -0 <output_filename>.

function query()

WHERE
<Ontology>
<TVSCHEDULE>
<CHANNEL>
<BANNER> $B </>
<DAY>
<DATEL1> $D </>
<PROGRAMSLOT>
<TIME> $T </>
<PROG_TITLE> <PCDATA> $P_TITLE </> </>
</>
<[>
</>
<[>
</>in"TV_dataxml",
$P TITLE="SPIN CITY"

CONSTRUCT
<Ontology>
<MY _SCHEDULE>
<BANNER> $B </>
<DATE1> $D </>
<TIME_SLOT> $T </>
<PROGRAM_NAME> $P_TITLE </>
<[>
<>
}

Fgure 5.4: An XML-QL query to retrieve information about a particular TV program.

The XML-QL query fileis shown in Figure 5.4.

www.manaraa.com



41

<?xml version="1.0" encoding="UTF-8"?>
<MY_SCHEDULE>
<PROGRAM_NAME>SPIN CITY</PROGRAM_NAME>
<BANNER> ABC </BANNER>
<DATE1> 04-24-2001 </DATE1>
<TIME_SLOT>
<HRS> 07 </[HRS>
<MINS> 00 </MINS>
</TIME_SLOT>
</MY_SCHEDULE>

Figure 5.5: XML-QL processor output in the form of an XML document.

The output of the XML-QL processor is an XML document as shown in Figure 5.5. The
XML-QL query generated must have the same dructure as the XML document being
queried. The processor uses the “CONSTRUCT” clause in the XML-QL query to format

the results in the XML document.

SELECT
CHANNEL.BANNER, DATE1.DATEL, TIME.HRS, TIME.MINS,
PROGRAMSLOT.PROG_TITLE
FROM
CHANNEL, DATEL, TIME, PROGRAMSLOT, DAY, CHANNEL_DAY,
DAY_DATE1, DAY_PROGRAMSLOT, PROGRAMSLOT_TIME
WHERE

PROGRAMSLOT.PROG_TITLE LIKE '%SPIN CITY% AND
CHANNEL.CHANNEL_PK_ID=CHANNEL_DAY.CHANNEL_FK_ID AND
CHANNEL_DAY.DAY_FK_ID = DAY.DAY_PK_ID AND
DAY.DAY_PK_ID = DAY _DATELDAY_FK_ID AND

DAY _DATELDATEL FK_ID = DATELDATEL PK_ID AND
DAY.DAY_PK_ID = DAY_PROGRAMSLOT.DAY_FK_ID AND
DAY_PROGRAMSLOT.PROGRAMSLOT _FK_ID =
PROGRAMSLOT.PROGRAMSLOT PK_ID AND
PROGRAMSLOT.PROGRAMSLOT PK_ID =
PROGRAMSLOT_TIME.PROGRAMSLOT_FK_ID AND
PROGRAMSLOT_TIME.TIME_FK_ID = TIME.TIME_PK_ID

Figure 5.6: Equivaent SQL query to retrieve information about a particular TV program.

Then the XML document in Figure 53 is sored into the relationa database using the
loader component. The XML-QL query in Figure 55 is trandated to SQL using a
converson tool that is part of another ongoing research project in the Database Research

and Development Center. Figure 5.6 displays the equivdent SQL query. The SQL query

www.manaraa.com



42

is used to query the underlying reationa data warehouse by the Rdationd-to-Xmil-
Engine (RXE) component of the toolkit. The RXE, then converts the reationd results

into an equivaent XML document.

<Result>
<ROW ID="1">
<BANNER>ABC</BANNER>
<DATE1>04-24-2001</DATE1>
<HRS>07</HRS>
<MINS>00</MINS>
<PROG _TITLE>SPIN CITY</PROG_TITLE>
</ROW>
</Result>

Figure 5.7: Output of the RXE in the form of an XML document.

The RXE, then converts the rdationa results into an equivdent XML document as

shownin Figure 5.7.

5.3. Andyss of the Results

In test 1, the relational schema created using the toolkit captures the cardindity
congraints conveyed in the DTD as referentia congraints. The current verson does not
represent the domain condraints. To exemplify, an atribute defined as #REQUIRED is
mapped to a rediond attribute but without being condrained as “NOT NULL”. This
transformation is vaid due to the fact that the loaded XML documents conform to the
DTD describing the IWiz schema Hence, the doman condraints are checked in the
XML document, and can be ignored in the relationa schema. One of the other differences
is in the treatment of compodte attributes. In relaiond dgebra, the members of the
composite attributes are nested into the relation. For example, a composite attribute such
a “Time having “Hrs’ and “Mins’ as members will be dored as two rdationd

attributes, “Hrs” and “Mins’. But the SCE creates a separate table for “Time’ leading to

www.manaraa.com



43

an inefficent trandaion. Elements in a DTD are used to express both nested attributes
and entities, due to this it is not possible to distinguish between a nested attribute and an
entity from a DTD declaration. Also, in the relational schema, tables are creasted with a
gngle atribute; table “DAY” in Fgure 52, for example This trandaion heps in
recregting the DTD from the schema and condraints description. Thus it provides a
“round-tripping” between the DTD and reationd schema. The SCE treats dl the
referential condraints as many to many even though they are expressed as one to one.
According to the norms of normdization, such a mapping is inefficdent. But the
principles of normdization hold for rigid firmly established rdations. But in the case of
XML, this sort of mapping can be acceptable and can be handy when there is a change to
the globa schema Thus, a change to a cardindity congraint in the DTD can be easly
incorporated into the relaiond schema. More importantly, a DTD only describes the
cadindity redionship between dements in a coase mawmne. The SCE is a0
congrained by the redrictions in Oracle. Oracle does not alow the cregtion of a table
with a standard data-type as the name. For example, if “Number” were a ‘CONCEPT”
element, then the name of this dement has to be dtered in the DTD because “Number” is
a dandard data type in Oracle The maximum sze of reationd dtribute name in the
schema is 30 characters.  The agorithmic complexity for the schema cregtion process can
be broken down as follows It tekes congtant time to find out if an dement is a
CONCEPT. Cresting the attributes for the relationd table will require to traverang dl the
children of this node, which can take a wors case time of O(n). Creation of the

parent_child tables and referentid condraints take congtant time. This process is

www.manaraa.com



44

continued recursively on the children. Hence the overdl complexity is O(rf), where n is
the number of dement and attribute definitionsin the DTD.

The minimd representationd features in the DTD and the rules governing the
names and szes of atribute names in Oracle 8i limit the SCE The SCE is able to map
the metadata information represented in the DTD to the reationd modd vdideting the
schema crestion.

In test 2, the correctness of the toolkit is experimented and proved. The toolkit is
able to retrieve a loaded document and construct an equivalent document. Structure can
be imparted to this document by having additiona information regarding the output tags.
As shown in Figure 5.5, it can be seen tha the output XML document produced by the
XML-QL processor has an aready embedded structure. But the performance of the
processor degrades with the sze of the data set. In particular, when the size of the input
XML document exceeds 4 Megabytes of data, the processor crashes. On the other hand
the XML document generated by the RXE lacks structure, when additiona informetion is
not provided. It is merdy a representation of the relational data set. However structure
can be imparted to the output document if, path expressions for dl the output tags in the
relationa resultset are provided to the RXE. Further enhancement to the performance can
be achieved if the XML document is generated indde the relationa engine. The RXE is
robust and can handle large sze of input data. Contrasting the operations of the XML-QL
processor and the RXE, a clear difference in execution speeds can be noticed when the
data sze is increased. Although the RXE has an initid database connection time
overhead, it executes at a faster rate when the data Size is increased. The loading time for

the input data st requires further improvements. The dgorithmic complexity of this

www.manaraa.com



45

process is computed as shown. When the input SQL query is smple ie, it does not
contain a “GROUP By” dause, the RXE looks up the metadata data Structure provided
by the JDBC AP, which would take congtant time, to create the “tag” and includes the
data contained in the resultset as the tag value. Thus this operation requires a O(n) time.
If the input SQL query includes a “GROUP By” clause, the RXE has to group the
resulting data by the grouping attributes mentioned in the cause. Thus this operation
could take O(n*g) where n is the number of resulting tuples and g is the number of
grouping étributes. All in dl, RXE dealy outperforms the XML-QL processor when the

sze of the data set getslarge (> 4MB).

www.manaraa.com



CHAPTER 6
CONCLUSIONS

6.1. Summary

XML management systems are an important area of research and development in
the indugtry today. The area is rddivey new and is undergoing congant changes. The
W3C recommendation for an XML query language and XML schema would impact the
development of such sysems. The objective of this thess is to provide a solution to one
such system that manages XML datain areationa database system.

In this thess, we used the toolkit as a part of the Warehouse Manager component
of the IWiz prototype. The toolkit was used to automatically creste the schema for the
data warehouse and to store the data contained in XML documents. The internd data
mode and query language used in the Wiz sygem is XML and XML-QL; this is
abdracted from the user. The toolkit uses relaiond system as the data modd, and
understandably SQL as the query language. The toolkit requires dl incoming XML
documents to adhere to a globa schema, a DTD. The DTD is dso used to create the
relational schema. The Document Object Modd (DOM) is used to parse both the DTD
and the XML documents to generate the relationa scripts, to generate the schema and to

create the tuples for the relationd tables.

6.2. Contributions

The contributions of this work are as follows. We designed and implemented an

dgorithm to auttomaticadly trandate a DTD to a rdationd schema, a feature absent in a

46

www.manaraa.com



47

few commercid products. The dgorithm was able to identify the foreign key condraints
automaticaly from the dructure of the DTD. The XML loader was designed and the
load-gopend drategy implemented. Thus the daa in an XML document was
automatically stored in the relational database. A database connection engine, providing a
st of APl to other modules was implemented. Findly, the XML document generator was
desgned and implemented, having features to group the results in the outputted XML
document. Thus, a user currently using a traditiond database could “XMLize" his sysem
by usng this toolkit and by manudly cregting a globd DTD and generaing XML
documents from the relationdl tables.

The undelying research for the devedopment of the toolkit would have a
condderable influence on the current technology. It has provided an XML wrapper
system aound an exiding reaiond sysem. XML is the dominant modd to represent
information on the Web today. The need for an XML data management system has led to
the development of severd commercia products. The toolkit has been developed in view
of the exising products in the industry today. Findly, with respect to the IWiz prototype,
the toolkit has provided the data warehouse manager functionality. Enhancements to the
toolkit, especidly to the Reationd-to-XML-engine and the XML loader could reduce the
overdl wait-time for the user, increasing the throughput of the IWiz system.

Our solution to the problem of XML data management was derived over a period
of 12 months. The fird two months were spent in getting acclimatized to XML and
related technologies. After this phase, about three months were spent in studying related

literature and discovering the chalenges to this problem. We framed the architecture of

www.manaraa.com



48

the toolkit in the next two months. The implementation was completed in five months.
Currently, testing of the toolkit and its integration in IWiz is underway.

We have developed the toolkit verson 1.0 and hope it will be a garting point in
the development of a more robust and extensve system with additional features. In this
ever-changing Information technology era, changes ae happening to XML rapidly.
Severad aspects of the XML language are yet to be sandardized. This factor has
prohibited us from thoroughly covering and usng dl aspects of the XML technology at

thispoint in time.

6.3. Future Work

The mechaniam of data definition for XML is shifting from usng DTDs to usng
XML schema. The XML Schema has been recently advanced to proposed
recommendetion daus. The richer data definition fadlities in XML schema when
compared to DTDs will hdp the SCE in creating “gpt” fidd types in the reationd
schema

When the globd schema (DTD) changes, the current sysem would require the
relational schema to be re-created. Thus a new festure to handle the incrementa
maintenance of the reationd schema could work towards dtering the database metadata
like creating new tables and adding new columns to currently exising tables. A one to
one relation between two eements can become a m:n relation due to the introduction of a
“x7 4" or due to a new recursve definition in the DTD. The handling of parent child
relations as m:n can help when the DTD changes.

Recursve definitions in DTD declarations are not currently handled. But this

could never cause an incorrect schema credtion in the current implementation because

www.manaraa.com



49

when dements recursvely define one ancther, automaticaly they are concepts, and are
hence mapped to separate relationa tables. A future festure could detect these recursive
definitions and try to optimize the schema creetion.

A component to trandate an exidting relational schema to a DTD and to generate
a st of XML documents using the data stored in the relationd tables adhering to the
DTD. Then, the output of this component can be fed as the inputs to the toolkit. A new
relational schema loaded with the data as before can be crested. Thus a reationa
dadbase sysdem can be shifted to the XML sysem automaticdly. For dl future
transactions, this sysem will behave like an XML sysem but usng the relationa sources
as before.

The Loader currently implements the load-append strategy. The load-merge and
|oad- erase maintenance sirategies could be built into the toolkit making it more powerful.

Many researchers are suggesting changes to the reationa system that moves the
generation of XML documents to the relationd engine. Using such built-in features of the
database can increase the efficiency of the toolkit. Usage of stored procedures and
functions, reducing the utilization of JDBC can fagen the loading and document

generation process.

www.manaraa.com



LIST OF REFERENCES

[1] R. Aranha, J Cho, A. Crespo, H. Garcia-Molina, J. Hammer. “Extracting
Semigtructured Information from the Web.” In Proceedings of the Workshop on
Management of Semistructured Data, Tucson, Arizona, 1997.

[2] S. Abiteboul, "Querying Semidructured Data" Proceedings of the Internationa
Conference on Database Theory,” Delphi, Greece, 1997.

[3] S. Chawathe, H. Garcia-Molina, J. Hammer, K. Irdland, Y. Papakonstantinou, J.
Ullman, and J. Widom, “The TSIMMIS Project: Integration of Heterogeneous
Information Sources” in Proceedings of the Tenth Anniversay Meeting of the
Information Processing Society of Japan, Tokyo, Japan, 1994.

[4] S. Abiteboul, R. Goldman, K. Haas, Q. Luo, J. McHugh, S. Nestorov, D. Quass,
A. Rgaraman, H. Rivero, J Ullman, J Widom and J Wiener, “LORE: A
Lightweight Object REpostory for Semidtructured Data” Proceedings of the
ACM SIGMOD Internationd Conference on Management of Data, Montred,
Canada, 1996.

[5] World Wide Web Consortium, "Extensble Markup Language (XML) 1.0, W3C
Recommendation, 1998, avalable a  http://mww.w3.0rg/TR/1998/REC-xml-
19980210, March 2000.

[6] R. Goldman, J McHugh, J Widom. “From Semidructued Data to XML:
Migrating the Lore Data Model and Query Language” Proceedings of the 2™
International Workshop on the Web and Databases (WebDB '99), Philadelphia,
Pennsylvania, 1999.

[7] D. Suciu. “Semigtructured Data and XML,” In Proceedings FODO Conference,
K obe, Japan, 1998.

[8] J. Hammer, “The Irformation Integration Wizard (IWiz) Project,” Universty of
Florida Technicd Report, Department of Computer and Information Science and
Engineering, 1999.

[9] G. Kappd, E. Kapsammer, W. Retschitzegger. “Towards Integrating XML and

Reational Database Systems” Internationa Conference on Conceptud Modding/
the Entity Relationship Approach, Sdt Lake City, USA, 2000.

50

www.manaraa.com



51

[10] R. Bar, M. Carey, H. Pirahesh, B. Reinwad, J. Shanmugasundaram, E. Shekita.
“Efficently Publishing Reaiond Daa as XML Documents” VLDB Conference,
Egypt, 2000.

[11] R. Anderson, D. Bdliles, D. Birbeck, M. Kay, S. Livingstone, B. Loesgen, D.
Martin, N. Ozu, B. Pear, J. Pinnock, P.Stark, K. Williams, “Professonal XML,"
Wrox Press, 2000.

[12] World Wide Web Consortium, "Overview of SGML Resources,” October 2000,
available a http://www.w3.org/MarkUp/SGML, May 2000.

[13] World Wide Web Consortium, "XML Schema Part 1. Structures,” Working Draft,
22 September 2000, avalable a hitp:/Mmww.w3.org/ TR xmischema-1/, May
2000.

[14] World Wide Web Consortium, "XML Schema Part 2: Datatypes,” Working Draft,
22 September 2000, avalable at hitp:/Mmww.w3.org/ TRXmIschema-2/, June
2000.

[15] World Wide Web Consortium, "Document Object Mode (DOM) Leve 1
Specification,” 1998, avalable a  hitp://mww.w3.org/ TR'REC-DOM-Leve-1/,
April 2000.

[16] “The Document Object Modd (DOM) Level 2 Core Specification,” The World
Wide Web Consortium (W3C), http://mww.w3.org/ TR/DOM-L evel-2-Core/
2000-11-13 2000, December 2000.

[17] XML-QL User’'s Guide Bascs, hitp://mww.research.att.com/~mff/xmlgl/doc/
gtegraph.grnoids.html, March 2001.

[18] S Cluet, S Jacgmin and J Sméon, “The New YATL: Desgn and
Specifications” Technica Report, INRIA, 1999.

[19] S. Abiteboul, D. Quass, J. McHugh, J. Widom, and J. Wiener, “The Lord Query
Language for Semidructured Data” Internationd Journd on Digitd Libraries,
vol. 1, pp. 68 - 88, avalable a ftp://db.stanford.edu/pub/papers/lore96.ps, April
2001.

[20] J Robie, “The desgn of XQL,” 1999, http://mww.texcel.no/whitepapers/’xgl-
desgn.html, April 2001.

[21] “XML-QL : A Quey Language for XML, Veson 09" : avaldble a hitp:/
www.research.att.com/~mff/xmlgl/, 2000, March 2001.

[22] J Hammer, “Data Warehousng Seminar,” information avalable a hitp:/
www.cise.ufl.edu/~hammer/classes/wh- seminar/overview.html, April 2001.

www.manaraa.com



52

[23] H.Gacia-Moling, J. Hammer, J. Widom, W. Labio, and Y. Zhuge, “ The Stanford
Data Warehousing Project,” Data Engineering Bulletin, vol. 18, 1995.

[24] D. Horescu, D. Kossman. “Storing and Querying XML Daa Usng an RDBMS”
In IEEE Data Engineering Bulletin, volume 22(3), 1999.

[25] D. Dewitt, G. He, J Naughton, J Shanmugasundaram, K. Tufte, C. Zhang, “
Reationd Datdbases for Querying XML Documents: Limitations and
Opportunities,” Proceedings on the 25" Internationa Conference On Very Large
Databases (VLDB), Edinburg, 1999.

[26)] WW. Chu, D. Lee *“ Condrantspresrving Trandormaion from XML
Document Type Definition to Reationad Schema (Extended Version),” UCLA-
CS-TR 200001, 2000, available at http://www.cs.ucla.edu/dongwon/paper, 2001.

[27] H. Gacia-Moalina, H. Gupta, J. Labio, J. L. Wiener, J Widom, Y. Zhuge, "The
WHIPS Prototype for Daa Warehouse Credation and Maintenance” In
Proceedings of the ACM SIGMOD Conference, Tuscon, Arizona, 1997.

[28] H. Gacia-Madlina, H. Gupta, J. Labio, J L. Wiener, J. Widom, Y. Zhuge, "A
Sysem Prototype for Warehouse View Maintenance," Proceedings of the ACM
Workshop on Maeridized Views Techniques and Applications, Montred,
Canada, 1996.

[29] Oracle XML SQL Utility (XSU) for Java and XSQL Servlet, avalable at
http://technet.oracle.com/tech/xml, August 2000.

[30] GMD-IPS implementation of PDOM, avalable a http://xml.darmstadt.gmd.de/
xql/index.html, October 2000.

[31] M. Fernandez, D. Florescu, J. Kang, A. Levy, and D. Suciu, “STRUDEL: A Web-
gte Management System,” presented a SIGMOD'97, Proceedings ACM
SIGMOD Internationd Conference on Management of Data, Tucson, Arizona,
1997.

[32] B.Beauchemin, “Invedtigating the differences between SQL Server 2000's XML
integration and Microsoft's XML  technology preview,” avalable a
http://mww.msdn.microsoft.convlibrary/periodic/period00/thexmifileshtm, April
2001.

[33] R. Bourret, “XML and Databases” Manuscript avalable a  hitp://mwww.
rpbourret.com/xml/XMLAndDatabases.htm, April 2001.

www.manaraa.com



53

[34] H. Loeser, N. Ritter, B. Surjanto, “XML Content Management based on Object-
Relationd Database Technology,” Proceedings of the 1% International Conference
On Web Information Systems Engineering (WISE), Hongkong, 2000

[35] C. Cooper, "Benchmarking XML Pasarss A peformance comparison of sSx
sream-oriented XML parsers” 1999, avalable a  hitp:/Aww.xml.com/
pub/Benchmark/article.html, March 2001.

[36] D. Horescu, D. Kossman. “A Peformance Evaudion of Alternative Mapping
Schemes for Storing XML Daa in a Reationa Database” Technicd Report,
INRIA, France, 1999.

[37] T.Bohme, E.Rahm, “XMach-1: A Benchmak for XML Data Management,” In

Proceedings of German database conference BTW2001, Oldenburg, Springer,
Berlin, 2001.

www.manaraa.com



BIOGRAPHICAL SKETCH

Ramasubramanian Ramani was born in New Ddhi, Indig, in 1977. He received
his bachdor's degree in computer science from S Venkatesvara College of
Engineering, Univerdty of Madras in 1995. In 1999, he obtained admisson to the Master
of Scence program in the Computer and Information Science and Enginesring
Depatment, Universty of Horida He will be graduating in August 2001. His research

work in the Universty of Florida has been focussed on information integration, XML and

database systems.

www.manharaa.com




